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We study the Ising model for an alloy with an arbitrary number of com- 
ponents. We develop an approximation which reduces to that of Bethe and 
Peierls when the concentration of one of the components is unity. We 
investigate within this approximation the dependence of the various 
thermodynamic quantities, in particular T~, on the composition of the alloy 
and the magnetic properties of its constituents. Comparison with the only 
exact calculation available, that of F. T. Lee et al., for a linear chain, shows 
extremely satisfactory agreement. 
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1.  I N T R O D U C T I O N  

The role p layed  by  the Is ing mode l  in the deve lopment  o f  our  present  under-  
s tanding  o f  phase  t rans i t ions  is well known (see, e.g., Refs. 1). I t  is one o f  the 
s implest  mode l s  which can be s tudied  in some detai l  while still conta in ing all 
the relevant  physical  ingredients .  The pu rpose  o f  this work  is to s tudy the 
effects o f  d i sorder  on the Ising mode l ;  we will a l low different sites to be 
occupied  at  r a n d o m  by different k inds  o f  a toms  (like an al loy) and  invest igate 
how this affects the var ious  t h e r m o d y n a m i c  quanti t ies ,  in par t i cu la r  the 
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transition temperature T~. A similar study has already been carried out for the 
linear chain (2-4~; the disadvantage of this, however, is that no phase transition 
occurs, (s~ and so one of  the most interesting aspects of  the problem is lost. 

We define our model and the parameters characterizing disorder in 
Section 2. The formalism is developed in Section 3, where we also discuss the 
relation between this work and the Bethe-Peierls approximation for the pure 
crystal. In Section 4 we derive the various thermodynamic quantities at 
arbitrary temperature and field, while in Section 5 we study in particular the 
case of  zero field and T > T~. The transition temperature is found as the 
temperature at which X - (8J / /8~)~=0 diverges. In Section 6 we study in 
more detail some particular cases, and compare our results with those of  
Ref. 4. Some final remarks are made in Section 7. 

2. DEF IN IT ION OF THE M O D E L  

We consider the system described by 

( t ,D i 

The symbol ( i , j )  under the summation sign means that only pairs of nearest 
neighbors are included. We assume that there are different kinds of  atoms 
A, B, C .... distributed at random on the lattice, with concentrations 
cA, cB, cc ..... The positions of  the atoms are "frozen in"  forever, and are not 
affected by temperature. I f  site i is occupied by an a tom of type X (X = A, 
B,...), we set h, = /~x ~ (N is the external field;/z x is the magnetic moment of  
species X) and similarly if  site i a n d j  are neighbors occupied by an X and a Y 
atom, we set J,j = Jx r  in Eq. (1). We assume that ~ takes only the values + 1 
as in the usual Ising problem. The various species are thus characterized by 
different magnetic moments and different coupling constants. 

To describe the compositional disorder, we introduce an auxiliary 
random variable X, for each site, with the probability distribution 

f A  with probability CA 

X~ = J B  with probability cB (2) 

For  simplicity we assume the various X~ uncorrelated, so that the joint 
probability for several X's  factorizes; for example, Prob{X~ = A and 
Xj  = B} = CACB. A compositional configuration is then specified by the set 
of  variables {X~; i = 1, 2,...} - X. The Hamiltonian (1) can now be written 
in a way which shows explicitly its dependence on configuration 

= : e , ,  = - y .  J(X , - y h(x3   (3) 
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A given spin state of the system is specified by the set of numbers {cri} , 
each being either + 1 or - 1 .  In analogy with the X's, we introduce the 
notation a = {e~; i = 1, 2, 3,...}. It should be emphasized, however, that the 
variables X and ~ play quite different roles in the problem: only the e~ can 
fluctuate in thermal equilibrium. At temperature T the probability of finding 
X and a is equal to the probability of having X in the first place (determined 
by the concentrations, independent of temperature), times the probability that 
a system with Hamiltonian J~'x will be in spin state a. From elementary 
statistical mechanics 

Prob{X, o} -- Prob(X) exp[-/?afx(a)] 
Tr,{exp(_ ~af,x) l (4) 

At temperature T the thermal energy of the system is 

U(p, ~ ;  X) = ~ ~ x  exp[-/?~'Ox(a)] a 
Tr, [exp(-/3Jr~ ] - a/~ in [Tr, exp( -/~afx] (5) 

:Since U is a macroscopic quantity, it should depend on the concentra- 
tions cA, cB .... but not on the exact positions of the A, B .... atoms. (We 
assume, of course, that the system is so big that all possible local configura- 
tions will occur somewhere in it.) Thus, for almost every X, Eq. (5) must 
coincide with its average over configurations 

u(5 ,  ~ ;  e~, c~ .... ) = <u(/3, ~ ;  X)>x 

- ~ { x~ Prob(X) ln[Tr~ exp(-/3af'x)]} (6) 

Clearly (6) is the physically relevant quantity, not (5). 2 In any actual 
experiment only the concentrations, not the exact positions of the atoms of 
each kind, are known. 

A look at (6) suggests that the thermodynamic properties of our alloy 
can be found by carrying out the following steps: (a) Compute Zx = 
Tro[exp(-/g-~x)] for each configuration X; (b) average In Zx over configura- 
tions to get the mean free energy; and (c) derive all other quantities from 
( F )  in the usual way. This is essentially the procedure followed in Ref. 4. 
We want to propose in the next section an alternative approach, which does 
not involve the computation of the partition function as an intermediate step. 

3. F O R M A L I S M  

Consider a pair of nearest-neighbor sites, i,j, and let _~jP~2)rv~,~, ~,. Xj, ~j) 
be the probability of finding the variables X~, % Xj, c,j when the system is in 
thermal equilibrium of temperature T. If all these probabilities were known, 

2 For a clear discussion of the averaging process see Brout. (~) 
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it would be possible to compute  thermodynamic  properties, since our  
Hamil tonian contains only nearest-neighbor interactions. The pair proba- 
bilities P~) could in principle be obtained from Eq. (4) by summing out  all 
variables relating to sites other than i , j:  

P[~)(X~, cry; Xj, ~j) = ~_, Prob{X, a} (7) 
Xtc,  G k 

k~i;kr 

What we intend to do instead is to write down equations that the P~) must 
satisfy, in the hope of havl,g enough equations to determine the P}~) directly 
from them, without ever computing the partition functions Z x. To carry out 
this procedure, we will have to make an approximation, Eq. (14) below, 
comparable in spirit to the various truncation schemes familiar in the statis- 
tical mechanics of dense fluids. 

We assume periodic boundary conditions so that the system has no 
surface and all sites are equivalent. 3 Then P~) will be the same function for 
all pairs of neighbors i,j and the subindices can be suppressed. It also 
follows that 

P(2)(X, or; X',  or') = p(2)(X", (y';)i5, a) (8) 

Moreover ,  from the definition of  our  model  we have 

P(2'(X,, c,~; X,, ,rj) = Cx,Cx, (9) 

because the left-hand side is the probabil i ty of  finding an X~ and an Xj atom, 
which is independent  of  temperature.  

In terms of  p(2) we can construct  single site probabilities 

P(~(x, ~) - ~, P(~(x, ,,; x ' ,  ~') (lO) 
X ' , a  ~ 

as well as the condit ional probabil i ty that,  given a site with X',  d ,  a neighbor 
will have X, a: 

P(~)(X, (~IX', #)  - P(2)(X, (~; X' ,  c/)/P(Z)(X ', (~') (I1) 

Consider now a site (call it 0) and its y neighbors 1, 2, 3 ..... y (Fig. 1). 
The probabil i ty of  finding simultaneously Xo, %; X~, c~z;...;X, e~ is, by 
definition of  condit ional probabilities, 

P(~+~)(xo, o0; x~, ~; . . .  ;x,, ~,) 
= P(~>(Xo, ~o)P<~>(x~, ~]Xo, ~0) 

x P(~)(X2, (~2]X0, %; X,,  ~ ) . . .  P(~ %1)(0, ~0;...;Xr_~, ~,_~) (12) 

a For simplicity we restrict our discussion to ferromagnetic substances from here on. 
The antiferromagnetic case would require a splitting of our lattice into two sublattices 
and the separate consideration of two families of P}~)'s. 
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Fig. 1. A site a n d  its V neares t  n e i g h b o r s  (in this  case 
y = 4). 

I I I -?-,,'i .... I ~ .... o-.,,,i 

I I 
I 
I 

- 0  . . . . . . . . .  0 -  
I I I 

It is not true that, for example 

P(c)(X2, %lXo ,  %; X1, or1) = P(~ %lXo, %) (13) 

among other reasons because there will be many paths other than 1 --> 0 ~ 2 
along which the spin at site 1 can influence the spin at site 2. We will never- 
theless assume that (13) and its generalization 

P(e)(X~, e~]Xo, %; )(1, ~;. . . ;X~_I, cr~_~) = P(c)(X~, c%[Xo, %) (14) 

are approximately valid, in order to get a closed system of equations for the 
P~2)'s. We will show that 14 leads to the well-known Bethe-Peierls approxi- 
mation when applied to a pure crystal. The procedure to be followed here is 
therefore a generalization of the Bethe-Peierls approach to the case of a 
compositionally disordered system. 

Let us now write down, assuming (14), the probability that site 0 has 
(Xo, %) = (A, + ) surrounded by nA sites with (A, + ); mA sites with (A, 4 ); 
nB sites with (B, ~ ); etc: 

Prob{A, i ' ,  hA, m,t ,  nB .... } 

_ Y! p(1)(A ' t')[P(C~(A, ~' IA, j')]nA 
hA! m,~! nB! "" 

x [P(C)(A, 4 IA, ~')]mA[P(~5(B, J' IA, '~)1"~"" (15) 

Suppose now that the central spin is flipped, everything else remaining the 
same. We have in analogy with (15) 

Prob{A, 4, na, ma, nB,...} 

_ Y! p(z) (A ' ,~ ) 
17A! m,~! m B !  "'" 

• [P<~(A, '~ tA, + )]"4P~~ + IA" )]m.[P~~ ~' IA, + )]".... (16) 

The state of Eq. (16) has the energy of the state Eq. (15) increased by an 
amount 

A E  = 21xA~ + 2JAA(nA -- mA) + 2JaB(riB -- m~) + ... (17) 
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It  now follows for elementary statistical mechanics that 

Prob{A, t ,  nA, rnA, n~ .... } = e B~ (18) 
Prob{A, ,~, hA, mA, ns,...} 

Combining Eqs. (15)-(18) and using the definition of conditional probability 
(11), we get 

[P<~(A, ~ ) ] , - 1  1-~ 

p<l,(A ' 4? ) j  e=A,B .... p(2>(Q, } ; A ,  ,~ [pc2~(Q, + ; A ,  + 

= ~ exp[2/?JAe(ne - me) + 2tXA~] (19) 
Q = A , B  . . . .  

Similar equations hold of course with A replaced by B, C, etc., since any of 
the species could have been called A. The above equation must be satisfied 
for all acceptable values of  the n's and m's [by acceptable we mean that the 
n's and m's  are nonnegative integers and that ~(n e + me) = ~,]. We prove 
in the appendix that the set of  equations (9) and (i 9) is sufficient to determine 
all the P(2~'s. I f  new variables m o are defined by 

e4~e - p<2>(Q, ~ ; Q, ,~ )/p<2~(Q, ~, ; Q, ~, ) (20) 

we also prove there that for any two species X, Y (possibly the same, X = Y) 

U2>(X, ~ ; Y, ~ ) = cxcy[exp(mx + my)l/Dxy (21a) 

P<2~(X, ~ ; Y, ~ ) = CxCy[exp(~o x - m~ - 2~Jxy)] /Dxy  (21b) 

P<2~(X, ,~; Y, +) = Cxcy[exp(-~ox - coy)]/Dxy (21c) 
with 

Dxy - 2[cosh(mx + ~oy) + exp(-2PJxy)cosh(~ox - my)] (22) 

The ~o's in turn are determined by the set of  equations 

tZx~ y - 1 ~ece{[exp(oJx + me) + exp(mx - co e - 2f iJxe)] /Dxe}  
COx - + In 

Y ~ ~ece{[exp(c'Jx - me) + e x ~ o -  ~Ox 2~Jxe)] /Dxe}  

(23) 

The knowledge of the P<2)'S permits the computation of all thermodynamic 
properties (this will be shown in the next section) and therefore our problem 
is completely solved. 

4. T H E R M O D Y N A M I C  PROPERTIES 

Neglecting boundary effects, the Hamiltonian can be written as a sum of 
contributions from bonds: 

= - ~_, J(X~,  Xj)a~c~j + �89162 + h(Xj)cS] (24) 
(~,Y) 
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The mean energy per  bond is therefore 

U ~ (d~f~)/Nbonds 

= - ~, P~2,(x, ~; x ' ,  ~'){J(x, x ' ) ~ '  + �89 + h(x')~']) (25) 
X,X',q,~Y" 

and after the use of  (21) and some algebra we obtain 

u = - ~ ( ~ y / D ~ y )  
X , Y  

x {2Jxy[cosh(cox + coy) - exp( -2 /3Jxy)  cosh(cox - coy)]} - 2 ~ H  (26) 

where d{, the mean magnet izat ion per bond, is 

J f  = ~ (CxCy/ Dxy)[(t~x + ~y)sin(cox + co~) 
X , Y  

+ exp ( -2 t3Jxy ) (~x  - tzy)sinh(cox - coy)] (27) 

Once U and ~//d are known, all o ther  propert ies  can be obta ined f rom the 
well-known rules of  thermodynamics .  

5, ZERO FIELD 

The case ~ = 0 is part icular ly simple to study. A look at (23) shows that  
cor = 0, all Q, is always a solution of  (23) provided ~ '  = 0. This solution 
corresponds  to the absence of  spontaneous  magnet izat ion [see Eq. (27)]. We 
also know from general principles that  this must be the only solution for 
large T. Insert ing coo = 0 in (26) and (27), we find 

U = - x~ CxCyJxy tanh(/~Jxy) (28) 
X , Y  

J r  = 0 (29) 

and by differentiation of  (28) we get the specific heat 

C = k ~ CxCy[flJxy/cosh(fiJxy)] 2 (30) 
X , Y  

These equat ions hold for T > To, the transit ion temperature ,  which has 
yet to be found.  It is interesting to remark  that  for  ~ = 0 and a one- 
dimensional  chain they are exact. The reader  can verify that  (30) reproduces 
exactly the curves presented as Fig. 1 in Ref. 4. 

Returning to the case of  a rb i t ra ry  dimension,  we can also calculate the 
magnet ic  susceptibility at high T, 

&/Of # 
0cox amy 

X - -U~ = ~ c x &  IXx ~ + I x y - ~  + tanh(fiJxv) 
X , Y  

[  coy ocox]\ 
x /xx-~- ~ + tzz g ~ j j  (31) 
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This is obtained by differentiation of  (27). The derivatives 8oJQ/8~ are found 
from (23); with some rearranging of  terms we have 

~oJ x OcoQ 
a ~  (y  - 1) ~ c o ~ t a n h ( f i J x e )  = Fx~)  (32) 

From here we can determine the transition temperature. The derivatives 
0o~Q/0~, which determine X, come from solving the linear inhomogeneous 
system of equations (32) with determinant 

Detllcr t a n h ( f i Y x r )  - [3xr / (y  - 1)]]l (33) 

The susceptibility X therefore diverges when 

Det[lcy t a n h ( f i d x r )  - [3xr / (y  - 1)]1[ = 0 (34) 

A closer look at the problem reveals that the condition (34) actually deter- 
mines the critical temperature To; our problem is not one of the pathological 
cases considered, for example, in Stanley's book. a) The set of equations (23) 
is of the form 

fX(~OA, ~o~,...) = 0 (35) 

and (34) tells us precisely that 

O ( f A , f B  .... ) ~Q=O = 0 (36) 
~(,o~, ,08 .... ) 

This means that the map ~Ox' = fx(r.oa, o~B,...) is no longer one-to-one in the 

1 dU 
k dT 0.5- / 

/ /  / / /  / /  / /  

o3 / /  

C  ̂7 "  ,// , /  / /  ,// / /  .// 

Fig. 2. Specific heat  of  a b ina ry  a l loy  as a func t ion  of  t empera tu re  for var ious  
compos i t ions .  The a rb i t ra r i ly  chosen  pa ramete r s  are:  coo rd ina t i on  n u m b e r  
v = 6, JAB = 0.05J,  aA, JBB = 0.5JAA, and  zero field. Thespec i f i chea t  doesno t  
diverge but becomes quite large at T = Tc-, 

3.5 kT/jA A 
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neighborhood  of  the origin when T = T~. As T crosses Tc f rom above, a 
second root  o f  (23) appears for  T = Tc and moves cont inuously away f rom 
co o = 0. The system exhibits a second-order  phase transit ion in complete 
analogy with the usual Bethe-Peierls approximation.  

We have so far bound  analytic expression for the the rmodynamic  
quantities at zero field and T > To, as welt as the condit ion (34) determining 
T~. The cases ~ '  va 0 and/or  T < T~ have to be treated numerically. The 
system (23) can easily be solved on a computer ,  and once this is done every- 
thing else can be calculated f rom Eqs. (26) and (27). As an example o f  the 
results obtained, we have computed  the specific heat o f  a binary alloy with 
arbitrarily chosen values 7 = 6, JBB = 0.5JAA, JAB = O.1JAA,  and ~ '  = 0 o f  
the parameters for  several concentrat ions.  The results are shown in Fig. 2. 

6. SOME PARTICULAR CASES 

6.1. One Component 

In  the absence of  disorder, Eq. (34) reduces to 

( 7 -  1)tanh(J/kT~) = 1 

o r  

(37) 

2 J  
T~ = k ln[7/(7 - 2)] (38) 

This is precisely the Bethe-Peierls result (see, e.g., Ref. 7), as we had antici- 
pated in Section 3. 

6.2, Dilute Ferromagnet 

We consider a binary alloy, but assume that  only one component  is 
magnetic. We set JAA = J ;  Ja~ = JBB = 0; CA = C; Ca = 1 -- e. Equat ion  
(34) then becomes 

1 - c ( 7 -  1)tanh(J/kT~) 0 
0 I -= 0 (39) 

or  solving for  To, 

2 J  
To = k l n ( [ c ( 7  - ] )  + 1 ] / [ e ( 7  - 1)  - 1]}  

(40) 

This result has been derived by Sato et al., (8~ and we recapture it here as a 
particular case o f  our  formalism. As a funct ion of  concentrat ion Tc looks as 
shown in Fig. 3. Notice that  no transit ion is possible for c ~< corit = 1/(7 - 1). 
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0 Ccrit 
= C Fig. 3. Transition temperature vs. concentration for a dilute 

ferromagnet. 

It is well known that the Bethe-Peierls approximation amounts to re- 
placing the lattice by a Cayley tree(9); it is therefore not too surprising that 
Co,it coincides with the percolation threshold on this pseudolattice. (1~ Of 
course a necessary condition for a phase transition is that infinite clusters of  
magnetic atoms should exist; we have shown that, at least within our ap- 
proximation, this condition is also sufficient. 

6.3. General Case 

The transition temperature is the solution of 

eA tanh \ k T c ]  ~, - 1 cB tanh kTo  ec tanh ~ ... 

JAB 1 = 0 (41) 
cA tanh k--~: cB tanh : ~ , - 1  : : "i" 

For  given cA, cB .... the equation can only be solved numerically for To. 
But if Tc and all except two of  the concentrations are considered as indepen- 
dent variables, it becomes trivial to solve for the remaining concentrations. 
Suppose, for instance, co, cD, etc., as well as Tc are given; setting cB = 1 - 
cA - cc - eD ... in (4!) gives a second-order algebraic equation which can 
then be solved for CA. In this way a phase diagram can be constructed. To 
exemplify this procedure we have done so for the case of  a binary alloy, 
choosing arbitrarily 7' = 6, JBB = 0.5JAA, and various values of  JAB. The 
results are presented in Fig. 4. 

6.4. One Dimension 

In order to check our approximation, we have recalculated with the 
present formalism several of  the one-dimensional results given in Ref. 4. As 
already mentioned in the preceding section, our approximation becomes exact 
for the linear chain in zero field, so only the situation ~ va 0 has yet to be 
considered, Lee et  al. (~) give plots of  the magnetization J d  and a reduced 
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Fig. 4. Transition temperature vs. com- 
position for a binary alloy; the parameters 
were arbitrarily chosen: 

~, = 6, JBB = 0.5JAA. 

kl~ 
JAA 

5 

4 

3 

2 

1 

0 

JAB =1.5 JAA 

- g : o . 2 s J , ,  /"..- ..,. 
/J.r -- .J~r 

I i I h m_ 
.2 .4 .6 .8 I c a 

susceptibility defined as kT(O~//O,~)/iXA 2 in Figs. 4 and 5 of their paper, 

choosing JAB = --O.05JAA, JBB = 0, t~A = /ZB, and [ Z A ~ / J A A  = 0.1. We have 
calculated the same quant i t ies ;  our  results are given in Figs. 5 and 6. 

For  kT/JAA > 0.5 the curves we obtain coincide with theirs almost  

exactly. If  there is any difference, it would not  be visible in the figures. For  

kT/JAA < 0.5 there are some discrepancies; in part icular  the reduced suscep- 

Fig. 5. Magnetization of a linear chain at 
finite field. Parameters chosen: 

JAB = - - 0 . 0 5 J A A ,  JBB = 0,  /ZA = /ZB, 

and 
/xBN = O. 1JA~. 

V 

1 

.5 

~ 6 

C B = ' I w  

I I gin- 

1 2 kT/JAA 
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kTX 

31- -  I _ \X.0q6 

v 1 2 kT/jAA 

Fig. 6. Reduced susceptibility kT(O..d'/&N)FA 2 

of a linear chain at finite field. Same parameters 
as in Fig. 5. 

t ib i l i ty  remains  finite as T--~ 0 in our  data ,  ~ while it  seems to vanish in theirs. 
We  believe that  this is due to an e r ror  in Ref. 4; p r o b a b l y  their  Fig.  5 was 

cons t ruc ted  by ex t rapo la t ing  wi thout  due care their  f in i te - tempera ture  curves 
to T = 0. The analy t ic  expressions in Ref. 4 would  yield a nonvanish ing  
reduced  suscept ibi l i ty  in very good  agreement  with ours.  

7. C O N C L U D I N G  R E M A R K S  

We have presented  an a p p r o x i m a t i o n  fo rma l i sm for  the s tudy o f  a dis- 
o rdered  Is ing model ,  the d i sorder  consis t ing in the presence o f  several different 
k inds  o f  a toms  r a n d o m l y  d is t r ibu ted  on the lattice. The a pp rox ima t ion  made,  
Eq. (14), is an extension to the  d isordered  case o f  the Bethe-Peier ls  approx i -  
mat ion .  We would  therefore  expect  our  results to have an accuracy compar -  
ab le  to tha t  o f  the Bethe-Peier ls  result  in the pure  crystal  p r o b l e m :  p o o r  in 
two d imensions  and low coord ina t ion  number ,  fair ly good  in three d imen-  
sions with high coord ina t ion  number .  Cri t ical  exponents  will o f  course be 

This finite reduced susceptibility is accidental, due to the particular condition 2JAB + 
/XBN = 0 satisfied by the parameters. With this choice the ground state of an isolated B 
atom in a completely magnetized chain of A's is degenerate: the magnetic energy/xBN 
and the interaction with neighbors 2JAB cancel exactly. As a consequence isolated B's 
make a Curie contribution x oc T-1 to the susceptibility. 
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given incorrectly, as is always the case with mean field theories. 
But where the present work should be most Useful is in providing some 

preliminary insight into the effects of disorder on the magnetic properties of a 
material. One could, for example, have imagined that disorder would smear 
out or broaden the magnetic phase transition; it is instructive to see that, at 
least within our approximation, T~ is shifted but the transition remains sharp. 
The dependence of T~ on concentration obtained here makes good sense (the 
Gaussian model, for instance, would predict unphysical results on this point), 
and the case of the dilute ferromagnet also seems to be well described; plain 
mean field theory would instead predict a transition even for arbitrarily small 
c. In view of all this, we believe that the present treatment constitutes a 
reasonable approximation for the problem under consideration. 

A P P E N D I X  

We consider Eq. (19), 

[p (1)(A, ,~)1,-1 [p(2)(Q, # ; A ,  #)]n~[p(2,(Q, + ; A ,  L)lmQ 
P(1)( A, T}] Q=A~,B .... [p(2)(Q, ~, ;A, ~,)] [ ~  ,~ ;A, ,~)] 

= eZUJ~ ~ I  e2eSAQ('~*-mQ) (A.1) 
O 

which must hold for all acceptable values of n~ and mQ. Suppose we change 
nA into nA + 1 and nx into nx - 1. In the process the right-hand side of 
(A.1) gets multiplied by exp[2fi(JAA- JAx)] while the left-hand side gets 
multiplied by another factor involving four of the P(2)'s. Since we want the 
equality in (A. 1) to hold both before and after the substitution on the n's, it is 
clear that the two factors must be equal: 

P(2)(A, ~ ; A, "~ ) P(2)(X, ~ ; A, ,~ ) = e2B(jA,_jAX) (A.2) 
P(2)(A, ~ ; A, Iv ) P(2)(X, t ; A, ~ ) 

A similar argument based on the substitution nA--> nA + 1, m x - ~  mx -- 1 
yields 

P(2)(A, ~ ; A, ~ ) P(2)(X, ,~ ; A, + ) = e2B(SAA+SAX) (A.3) 
P(2)(A, ~ ; A, ,~ ) P(2)(X, + ; A, ~ ) 

Let us now define 

e~% _ p(2)(Q, ~ ; Q, ~ )/p(2)(Q, ,~ ; Q, ~, ), Q = A, B .... (A.4) 

Using (A.3) with X = A, and (A.4), we have 

P(2)( A, t ; A, v ) = e-2~Ae-2eJ~P(A, ~ ; A, ~ ) (A.5) 

and combining (A.4) and (A.5) with 

P(2)(A, ~; A, ~') = CA 2 (A.6) 
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we finally express all P(2)(A, ~; A,  a') in terms of oJA: 

P(2)( A,  t ; A,  ~ ) = C A 2 e 2 C % / D A A  

P(2I(A, 4; ; A,  Iv) = CA2e-2BJA,4/DAA 

P(2)(A, IV ; A,  Iv ) = CA2e-2~ 

with 

DAA =-- 2(cosh 2~o A + e-2~JA~) 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

Our next step will be to eliminate P<2)(A, f ; A,  4; )/p(2)(A, 4; ; A, v ) from 
(A.2) and (A.3) using (A.7) and (A.8): 

P(2)(X, ~[" ; A, ,~ )/P(2)(X, 4; ; A, 4; ) = e-2BJAxe-2% (A.2') 

P(2)(X, ,~ ; A, IV )/P(2)(X, -1, ; A,  4; ) = e2B]Axe--2COA (A.3') 

Of course similar equations with X and A interchanged must also hold. We 
can therefore write 

P(2)(X, ~ ; A ~  , ~ ) =  e-2e~Axe-2~ 4 ; ;A ,  4;) (A.11) 

P(2)(X, IV ; A, 4; ) = e-2B:A~:e-2~%P(2)(X, 4; ; A,  ~ ) (A.12) 

P(2)(X, ,~ ; A, IV) = e-2(~+%)P(2)(X,  4; ; A, ~ ) (A.13) 

Substituting the last three in 

P(2)(X, (7; A,  (/) = CACx (h.14) 
(y,(~" 

we get 

P(2)(A, 4; ; X,  4;) = CACXe"~ (A.15) 

P(2)(A, ~ ; X,  4;) ~ CAexe-2eJ~xe~ (A.16) 

P(2)(A, + ; X,  .~ ) = CACxe-(%+C~ (A. 17) 

DAX ~ 2[cosh(co~ + cox) + e-2BsAx(~ -- cox)] (A.18) 

We have succeeded in expressing all P(2)'s in terms of the co's in Eqs. 
(A.15)-(A.18); in particular our earlier equations (A.7)-(A.9) are obtained 
from these by putting X = A. What we have not determined up to this point 
are the co's. Notice that we have only required so far that both sides of 
(A.1) change in the same way when the n's and m's change, but we must still 
impose that (A.I) is an equality for some particular set {no} , {me}. Let us 
pick, for instance, nA = y; all other n's and m's zero. Then (A.1) reads 

[P (~)(A, ~ )] ~-1 
~-)] e 2'(e:~§ = e2".~e2eS'es~A (A.19) 
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o r  

tZAfi~ y -- 1 P~I)(A, ~ ) 
COA -- + In (A.20) 

Y ~ P(Z)( A, ~ )  

Both P(1)(A, ~ ) and  P(1)(A, + ) are defined [Eq. (10)] in terms of p(2), and 

with the help of (A.15)-(A.17) we write 

t*Afi~ y -- 1 ~ Co[(ec~ + e--2~SAQCC~ 
09 A - -  -[- i n  (A.21) 

Y ~ ~ co[(e-~ + e-2~]aoe~ _ c~ ] 

as the equat ions determining the o;s. 
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